Chapter 2-Chapter Revieut

1. C
2. C
3. B
4. D
5. C
6. A
7. c
8. D
$9 . B$
9. A
10. A
11. A
B. A
12. A
15.D
13. distance $=35+18+26=79$
displacement $=-35+18-26=-43$
A
14. displacement $=-1+.8-.8+.5-.5+.2-.2=-1 m$
distemee $=1+.8+.8+.5+.5+.2+.2=4 \mathrm{~m}$
D
15.

$$
\begin{aligned}
& 86.4 \mathrm{~km} / \mathrm{h}=24 \mathrm{~m} / \mathrm{s} \\
& v=\frac{d}{t} \\
& d=v t=24(3.3)=79.2 \mathrm{~m}
\end{aligned}
$$

B
19. $v=\frac{d}{t}=\frac{12-0}{10-0}=1.2 \mathrm{~m} / \mathrm{s}$
B
20.

(not to scale)
21. C (two points are needed to colvalute an average velocity and you need two average velocities to colcemente an average acceleration m)
22. C
23. $0-10 \quad\left(\frac{160+205}{2}\right) 10=1825$

Area-Displacemet

$$
\begin{aligned}
& 10-20\left(\frac{(205+225}{2}\right) 10=2150 \\
& 20-30\left(\frac{225+240}{2}\right) 10=2325 \\
& 30-40\left(\frac{240+248}{2}\right) 10=2440 \\
& 40-50\left(\frac{248+249}{2}\right) 10=2485 \\
& 50-60\left(\frac{(249+250}{2}\right) 10=2495 \\
& 60-70\left(\frac{250) 10}{}=2500\right.
\end{aligned}
$$

Total area $=16220 \mathrm{~m}$

23 continued.

$$
\begin{array}{lll}
0-40 & \left(\frac{160+248}{2}\right) 40=8160 & \text { Total area } \\
40-70 & =15630
\end{array}
$$

Average velocity.

$$
\begin{array}{ll}
7 \text {-segments: } & v=\frac{d}{t}=\frac{16220}{70}=231.7 \mathrm{~m} / \mathrm{s} \\
2 \text {-segments: } & v=\frac{d}{t}=\frac{15630}{70}=223.3 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Your values may be slightly different due to estimating the values from the graph.

Since the line is curved, the more segments we use, the more accurate the estinnotion of the displacement and coverage velocity.
B (best answer from pions given)
24.

The answers for Parts A and B will vary. The following represent possible answers. The yellow lines represent the 0.35 distance that the speaker projects and the blue line represents the length of wire.

Part C

distance $=0.9$ miles
time $=5$ minutes $=0.083$ hours
$v=\frac{d}{t}=\frac{0.9}{0.083}=10.8 \mathrm{mph}$

Part D

distance $=0.9$ miles
speed $=30 \mathrm{mph}$
$v=\frac{d}{t} \Rightarrow t=\frac{d}{v}=\frac{0.9}{30}=0.03$ hours (or 1.8 minutes)
25. A 26. B 2F.B 28.C. 27. B
30. D 31. The greatest the displaiemon could have bean is $d=v t$

$$
=32(82)=1886 \mathrm{~m}
$$

therdroe, B
32. A 33. B
34. A
$35 \cdot B$
$36 \cdot B$
37.

$$
d=\frac{10(15)}{2}=75 \mathrm{~m} \quad \mathrm{~A}
$$

$38 \cdot B \quad 39 . B$
40. The circumferconce ot a circle πd.

$$
\begin{aligned}
& \text { Tid. } \\
& \text { distomee }=4.5(14) \pi=63 \pi \\
& \text { displacement }=74 \mathrm{~cm} \\
& C
\end{aligned}
$$

41. to the hospital $v=\frac{d}{t}$
to home $3 v=\frac{d}{t_{2}}$

$$
d=v t
$$

$$
d=3 v t_{2}
$$

Same distonce

$$
\begin{aligned}
y t & =3 y t_{2} \\
t_{2} & =\frac{t}{3} \quad B
\end{aligned}
$$

42. C
43. B
44. B
45. B
$46 . B$
46. displacement $=0$ (the ball and the puck both retwon to the starting pos.tion)

$$
\begin{aligned}
& \text { distene }=20+20=40 \mathrm{~m} \\
& \text { velocity }=0 \quad(\text { displacement }=0)
\end{aligned}
$$

D.
48. A
49.B 50.D
51. Area $=\left(\frac{18+170}{2}\right) 30=2820 \mathrm{~m} \quad \mathrm{C}$
52. $v_{\text {ardy }}=\frac{d}{t}=\frac{2820}{30}=94 \mathrm{~m} / \mathrm{s}$
53. A

54, displacement $=0$ (retunned home)

$$
\text { distance }=(1.3+.68+1.1+.42)^{2}
$$

$$
=7 \mathrm{~km}
$$

A
55. Runner A

$$
V=\frac{d}{t}=\frac{64}{25}=2.56 \mathrm{~m} / \mathrm{s}
$$

at 455

$$
\left.\begin{array}{rl}
d & =v t \\
& =2.56(45)
\end{array}\right)=115.2 \mathrm{~m} .
$$

C
56. (a) $v=\frac{d}{t}$

$$
t=\frac{d}{v}=\frac{75}{2.2}=34 \mathrm{~s}
$$

(b) $d=v t$

$$
\begin{aligned}
& =v t \\
& =(3.5)(34)=119 \mathrm{~m}
\end{aligned}
$$

(c) $119-75=44 m$

Runner B
Starts 2.55 later
Therefore $t=25-2.5=22.5$

$$
v=\frac{d}{t}=\frac{64}{22.5}=2.84 \mathrm{~m} / \mathrm{s}
$$

at 45 s

$$
\begin{aligned}
d & =v t \\
& =2.84(45) \\
& =127.8 \mathrm{~m} \\
& =130 \mathrm{~m}
\end{aligned}
$$

(Father went in straight me, therefore, his disteme should be used.)
57. B (lines are curved)
58. Slope from first ankh lout point

$$
v=\frac{-2-0}{6-0}=-\frac{1}{3} \mathrm{~m} / \mathrm{s}
$$

A
59. C (goingup=speeding up; going down = slowing dow in)
60.

$t(\mathrm{~s})$	$v(\mathrm{~m} / \mathrm{s}) \quad$ (slope)
$0-5$	$\frac{17.5}{5}=3.5$
$5-10$	$\frac{2.5-17.5}{5}=-3$
$10-15$	$\frac{5-2.5}{5}=0.5$
$15-20$	$\frac{25-5}{5}=4$

Average velocity: $\frac{3.5+(-3)+.5+4}{4}=1.25 \mathrm{~m} / \mathrm{s}$
or

$$
=\frac{25-0}{20-0}=1.25 \mathrm{~m} / \mathrm{s}
$$

Acceleration $=O$ (none of the velocity lies have A a slope> 0).

